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ith an explosive increase of Internet traffic
and a more demanding Internet security
requirement, designers of future genera-
tions of network intrusion detection sys-

tems (NIDSs)face more difficult challenges in meeting the
ever-stringent design requirements: detecting malicious pack-
ets with high fidelity, performing intrusion detection at full
wirespeed, and enough flexibility to enable detection rules to
be updated easily. NID is classified as either anomaly detec-
tion or signature detection. Anomaly detection identifies aber-
rant events by analyzing network traffic using statistical,
machine learning, or data-mining techniques; a signature-
based NIDS finds suspicious activities by comparing packets
with a pattern database of known attacks. Due to its relatively
simple implementation and lower false-positive rate for
known attacks, signature-based NID is highly popular.

Essential to signature-based NID is a string-matching algo-
rithm. To determine if an attack exists, the string-matching
algorithm compares packets with a rule set comprised of fin-
gerprints of known attacks. There are 3305 such rules defined
by Snort 2.4. Each rule consists of two types of strings to be
matched: one type comprises header strings with a determined
position in the packet header (e.g., source/destination network
address and source/destination port number); another type
comprises payload strings with a probabilistic position in pack-
et payload (e.g., network worms and computer viruses). A sus-
picious activity is detected when both header strings and at
least one of the payload strings are matched in the packet.

A string-matching algorithm is a computationally intensive
task because it checks every byte of a packet (both header and
payload) to see if it matches one of a set of thousands of pos-
sible attack patterns. Obviously, algorithms [1–3] on a com-
modity-processor approach do not scale well with increasing

line rates of network traffic. To deliver the required high per-
formance, specific techniques such as hashing [4], Bloom fil-
tering [5], and pre-filtering [6] were employed to optimize the
average case; however, this average-case optimization might
be attacked easily by sending many rare-case packets. A cus-
tomized hardware accelerator [7] and a rule-based compara-
tor [8] are alternatives to deliver worst-case guaranteed
performance. Meanwhile, new attacks are created all of the
time. Accordingly, new rules to detect attacks are increasing
dramatically in the Snort database [9], and we are expecting
this trend to continue. This observation implies that we must
design a system that is flexible enough to add new patterns
without impacting overall system performance.

The main contribution of this work is a self-addressable
memory-based finite state machine (SAM-FSM). It includes a
simplified memory structure and a novel address tag-based
encoding methodology that results in dramatic memory-size
reduction. By taking advantage of the proposed memory-
decoding structure, FSM state-collapsing techniques are devel-
oped to further reduce memory size. Hardware structures to
support FSMs with super states resulting from state collapsing
are developed. The design enables the FSM to receive multiple
characters as input within one clock cycle when collapsed sub-
strings are detected, which increases system throughput. Final-
ly, pipelined string-matching operations dramatically increase
system throughput by enabling a single string-matching engine
to process multiple packets simultaneously.

The remainder of the article is organized as follows. The
next section briefly discusses related work. We then describe
the proposed SAM-FSM engine. Methods to perform state
encoding for the SAM-FSM also are discussed in this section.
By taking advantage of this proposed hardware architecture, a
state-collapsing method is developed in the following section
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to further reduce memory size in the implementation. In addi-
tion, we discuss techniques to further enhance system pro-
grammability and throughput. Experimental results are
presented, and the article is concluded in the final section.

Related Work
A flurry of work was proposed to design a high-performance
string-matching engine. However, few works consider memory
efficiency and the ease of updating new patterns. We present
background and then the work that is most related to SAM-FSM.

Deterministic Finite Automata
Deterministic finite automata (DFA) can match multiple
strings simultaneously, in worst-case time linear to the size of
a packet. Figure 1 shows an example DFA used to match
“SHE,” “HERS,” and “HIS.” Starting at state S0, the state
machine is traversed to state S1 or S4 depending on whether
the input character is “S” or “H.” When an end state is
reached, a string is said to be matched. In the example in Fig.
1, if state S7 is reached, string “HERS” is matched.

Each state in the machine has pointers to other states in
the machine. If an input character is the next character in a
string that is currently being matched, the algorithm moves to
the next state in that string; otherwise, the algorithm follows a
failure pointer to the first state of another string that begins
with that character or to the initial state of the machine if no
other strings begin with that character. An example of this can
be seen in Fig. 1. If the current state of the machine is S5, the
last input characters would have been “HE.” If the next input
character were to be “R,” then the next state would be S6. If
the next input character were not “R,” but instead, “S,” then
the next state would follow a failure pointer to state S1, which
is the starting point for the string “SHE.”

Storage Requirement of Traditional DFA
A DFA can be implemented using hardware or memory. In a
memory-based implementation of a DFA, the current state
and input character are used as the memory address location
of the memory content. The memory content consists of the
next state and tag. A memory implementation of a DFA can
be reconfigured easily by reprogramming the memory with a
new or updated state transition table.

In a memory-based implementation of a DFA, the memory
size required to hold the state transition table is based on the
number of bits required to represent each state S and the num-
ber of bits required to represent each input character (8-bit). For
example, Snort Dec. 05 has 2733 patterns that require 27,000
states to represent them so the storage requirement is about 13
megabytes, which is too big to fit onto on-chip memory.

The amount of memory required to store a DFA is large
and increases greatly as the number of strings being matched
increases. The reason for the large memory requirement in
traditional memory-based FSM is that all possible 256 next
states of any given state are explicitly stored in the memory
array even though many of these next states are the same.

Memory Efficiency Optimization
The Aho-Corasick (AC) algorithm [1] can match multiple
strings simultaneously by constructing a state machine. Start-
ing from an empty root state, each string to be matched is
represented by a series of states in the machine, along with
pointers to the next appropriate state. A pointer is added
from each node to the longest prefix of that node that also
leads to a valid node in the machine. The major drawback of
the AC algorithm is a possible 256 fan-out, which results in
low memory efficiency.

Bitmap and compression [10] were proposed to optimize
the AC algorithm data structure to improve the memory effi-
ciency. The problems of bitmap compression require two
memory references per character in the worst case and 256
bits per bitmap. A potential problem with path compression is
that failure pointers may point to the middle of other path-
compressed nodes.

Lunteren [11] introduced a pattern-matching engine, bal-
anced randomized tree (BaRT) FSM pattern matching
(BFPM), which utilizes a BaRT-based FSM to provide storage
efficiency and a pattern compiler to support dynamic updates.
The substantial gain in storage efficiency is due to state transi-
tion rules that involve wildcards and priorities; however, sim-
ply using wildcards might require more than one memory
access to scan the incoming packet character. In contrast,
SAM-FSM requires one memory access for each incoming
packet character.

Tan and Sherwood [12] proposed a memory-efficient,
string-matching engine based on pattern partitioning and the
bit-split algorithm. This engine works by converting the large
database of strings into many groups called rule modules;
inside each module, many tiny state machines are employed to
search for a portion of the bits for each pattern. This pro-
posed architecture is capable of high performance; however,
the bit-split algorithm requires a hot-coding of a partial match
vector in each tile. Also, the patterns are divided into small
groups that consist of 16 patterns. This finer granularity of
pattern partitioning might increase the complexity of imple-
mentation and updating. SAM-FSM does not require dupli-
cating all the characters from the input stream because our
decoder (input decoder) automatically selects one of the 256
bits based on the input character.

We further compare SAM-FSM with these optimization
techniques later in this article.

SAM-FSM
SAM-FSM hardware architecture is based on the following
observation. In a straightforward memory-based FSM imple-
mentation for a given state, 256 next-state pointers are stored

n Figure 1. Finite state machine diagram. This machine is con-
structed to match patterns: “SHE,” “HERS,” and “HIS” (fail-
ure edge labels are omitted).
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in the memory. Many of them are the same data entries and
hence, waste memory resources. If we can design a metapoint-
er for each state that points to all the possible next states, we
can store a single pointer for each state and consequently,
save a great portion of the memory. Because the metapointer
indicates multiple states, the next-state selection can be per-
formed by a special memory decoder according to the meta-
pointer and FSM inputs. The proposed hardware architecture
and FSM encoding scheme are discussed as follows.

SAM-FSM Architecture
A metapointer, which we also refer to as a state code, is a
sequence of binary numbers that can be partitioned into differ-
ent segments (also called clusters). For an FSM state, the
information contained in its clusters, which is referred to as an
address tag in this article, indicates its possible next states. For
example, if the code of state Si is comprised of three clusters
c1, c2, and c3, the binary bits contained in c1, c2, and c3 indicate
the three possible next states of state Si. This is why SAM-
FSM is referred to as self-addressable memory — the next-
state codes will be known based on the current state coding.

The hardware architecture is shown in Fig. 2. It consists of
a memory array, a state register, group detectors, and an
input decoder. Similar to other memory-based FSMs, the
memory array stores state codes (metapointers), and the state
register stores the current state. The group detectors detect
signatures contained in the code of the current state and iden-
tify all the possible next states (by pulling the corresponding
decoder output to logic 1). Each group detector circuit detects
only one address tag and for a given current state, multiple
group detector outputs can switch to logic 1. The input
decoder decodes the 8-bit FSM input into a 256-bit one-hot
code that controls which logic-1 group detector output can be
passed to the memory array (to access the corresponding
memory location) according to the FSM input. The outputs of
the AND gates directly drive the word lines of the memory
array. There is no address decoder inside the memory array.
This is a fundamental difference between SAM-FSM and
other memory-based FSM implementations. In this work, we

modify the memory circuit at low level to improve
memory efficiency. For the convenience of discus-
sion, we refer to the combination of group detectors,
input decoder, and the AND gates as the memory
decoder circuit in the following discussion.

SAM-FSM does not cause any hardware overhead
compared to conventional design. The size of the
memory array is dramatically reduced by eliminating
repeating entries. The group detector circuits are
smaller than the conventional memory address decod-
ing circuits because their output logic depends on
fewer input variables. The input decoder circuit is the
only extra circuit in our design when compared to the
conventional memory circuit. However, the overhead
introduced by the input decoder is negligible com-
pared to the reduced memory array size. As indicated
later in this section, the SAM-FSM potentially leads
to very wide memory word, which potentially increas-
es signal propagation delay on memory word lines.
This problem can be solved by using pipelined opera-
tions, which are discussed later.

SAM-FSM State Encoding
In SAM-FSM, the codes of FSM states are very simi-
lar to chromosomes that consist of a DNA sequence.
An FSM state code consists of a set of signatures that
indicate all possible next states. An FSM state Si has
a corresponding address tag ςi that should be includ-

ed in the codes of all the states whose possible next states
include Si. We denote this group of states as Gi. Due to the
previous relation, we also refer to ςi as the address tag of
Group Gi. In the following discussion, we frequently use the
concept of group to indicate all the FSM states that share a
common possible next state. Because a state can have multiple
possible next states, a state can belong to multiple groups.

An important question in state encoding is how to place
group signatures along the binary bits of the state code. To
simplify the decoder design in SAM-FSM, the address tag of a
group must be placed on the same positions of all the state
codes that contain this address tag. This is the only constraint
in the address-tag placement problem. The simplest method is
to use one-hot encoding: each group address tag takes a fixed
location; if the position contains datum 1, it means the
address tag is contained in the code. Otherwise, the position is
filled by a value of 0. However, this simple method dramati-
cally increases the memory size.

Some interesting properties regarding group address-tag
placement were observed in our study. If two groups have a
common state, Si, the code of Si must contain the signatures
of both groups. Thus, the two signatures must be placed into
different positions for all state codes. However, if two groups
do not share a common member (we reference the two groups
independent of each other), the signatures can take the same
position in state codes because there are no states that con-
tain both signatures. This property leads to a state encoding
procedure discussed as follows. We apply the algorithm listed
in Algorithm 1 to find all mutually independent group sets.
For all members of a mutually independent group set, the sig-
natures can be placed in the same location, referred to as a
cluster in this article. We can apply binary encoding to gener-
ate signatures for the groups within a cluster. The order of
clusters can be arbitrary. After the group signatures are gener-
ated, the code of each state will be a collection of group sig-
natures following the fixed cluster order.

In line 4 of the pseudo code of the algorithm, a state group
procedure is performed as follows. For each FSM state, Si,
place all fan-in states of Si into a group. After this procedure,

n Figure 2. SAM-FSM architecture.
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N groups are generated, where N is the number of FSM
states. In line 5, a group graph is generated following the pro-
cedure described by lines 12–23. In line 7, a well-known Maxi-
mum Clique search algorithm is used to recursively search the
maximum cliques of the graph. The vertices of the obtained
cliques represent the mutually independent groups. The above
FSM state encoding procedure is further illustrated by the fol-
lowing example.

The first step is to group all the nodes in the FSM that
have the same next state into one group, group G1[S0, S1, S2,
S3, S4, S5, S7, S9], G2[S1, S7, S9], G3[S2], G4[S0, S2, S3, S4,
S5, S6, S8], G5[S4], G6[S5], G7[S6], G8[S2, S4], and G9[S8].
Now we are ready to build a new graph from these groups
that is called a group graph. If there is no same state between
two groups Gi and Gj, an edge is created between Gi and Gj.
For example, G4 of the group graph has only one edge, the
edge to node G2, because there is at least one member of
group 4 (node G4) that is also a member of another group,
except group 2, the only group that shares no members with
group 4.

The second step of our methodology is to cluster the
groups from the group graph by taking advantage of the
Clique Algorithm, in other words, to find a cluster with maxi-
mum clique or groups without repeating states. The clustering
result is C1[G1], C2[G2, G3, G5, G6, G7, G9], C3[G4], and
C4[G8]. In the first iteration of the algorithm, Cluster C1 has
three members: G1, G7, and G9. All three nodes share an
edge with each other. The algorithm looks for the maximum
clique or groups in a cluster. In this case, G7 and G9 also can
belong to cluster C2, which has more members than cluster
C1. The clique algorithm moves G7 and G9 to cluster C2,
increasing the number of members of cluster C2 and decreas-
ing the number of members of cluster C1 — forming the
largest possible clusters — the goal of the Clique Algorithm.
The bit length of a cluster is the size in bits required to repre-
sent each group in the cluster. For example, Cluster C1 has
only one member; therefore we require only one bit to repre-
sent its groups. Cluster C2 has six members so we require
three bits to accommodate them. The encodings for the

groups are G1(1), G2(001), G3(010), G4(1), G5(011),
G6(100), G7(101), G8(1), and G9(110). The encoding begins
with 1 not 0; for example, group G2 is encoded as 001, not
000. G3 is then encoded as 010 and so on.

The last step is to encode each state by concatenating the
group codes for each state. The encoding for each state is
shown in Table 1. S2 is contained by groups G1, G3, G4, and
G8. The index or encoding for S2 is formed by concatenating
the codes for these groups. The codes are: 1, 010, 1, 1, and
the final concatenated index for S2 is 101011, as shown in
Table 1, column 3.

Memory Size Reduction through State
Collapsing
The proposed hardware architecture and state-encoding
scheme not only reduce memory size but also simplify the
memory-decoder circuits. By taking advantage of the special
memory-decoding scheme in SAM-FSM, we can further
reduce the memory size through FSM-state collapsing. The
basic idea behind state collapsing is to find commonly occur-
ring substrings (referred to as super characters) and collapse
the states corresponding to the occurrence of such substrings
into a single state. A substring is qualified for state collapsing
operation only if its corresponding states have only one fan-
out branch, except the state corresponding to the last charac-
ter. For example, Fig. 3 shows an FSM for patterns COOK,
FOOD, FOIL, ROOT. The valid super characters are marked
by ovals in the figure, whereas the substring surrounded by a
rectangle is not a valid super character.

When performing state-collapsing operations, the length
and number of occurrences of substrings are important param-
eters. Such parameters can be selected empirically, based on
our experimental results. With the selected parameters, the
search of valid super characters can be performed as follows.
First, locate all possible valid substrings within the pattern set,
up to length N. Second, calculate the occurrence of each sub-
string and sort substrings in descending order by length/occur-
rence. Finally, replace all states for each valid substring
occurrence with one state, referred to as a super state.

To enable the FSM to move from a state to a super state

n

                   

Table 1. Concatenated group.

State Group Code

S0 – 0 0 0 0 0 0

S1 G1 G2 1 0 0 1 0 0

S2 G1 G3 G4 G8 1 0 1 0 1 1

S3 G1 G4 1 0 0 0 1 0

S4 G1 G5 G4 G8 1 0 1 1 1 1

S5 G1 G6 G4 1 1 0 0 1 0

S6 G7 G4 0 1 0 1 1 0

S7 G1 G2 1 0 0 1 0 0

S8 G9 G4 0 1 1 0 1 0

S9 G1 G2 1 0 0 1 0 0

n Algorithm 1. Algorithm for searching mutually independent
groups.

Input: State Trans. Table: T
Result: Indep. Group Set R

1 Search_Indep_Group( T)
2 begin
3 R = θ ;
4 G = StateGrouping(T) ;
5 G = Create_Graph( G );
6 while |G| ≠ θ do
7 c = MaxClique(G) ;
8 add c to set R ;
9 remove c from G;
10 end
11 end
12 Create_Graph( G)
13 begin
14 while G ≠ θ do
15 remove a group gi from G ;
16 add a vertex vi for group gi on G;
17 for vertex Vvj on G do
18 if gj ∩ gi = θ then
19 add a edge between vj and vi

20 end
21 end
22 end
23 end
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within one clock cycle, a look-ahead decoder is required. Fig-
ure 4 shows an example of this decoder, which can check for
occurrences of up to four character-length super characters.
Compared with Fig. 2, the look-ahead decoder requires multi-
ple input decoders, one priority decoder, and one shift regis-
ter. In addition, the word line AND gate takes multiple
fan-ins, and its output not only determines the next state but
also the stride of shift operation. For example, if M41 = 1,
then the next state is S7, and shifting stride is 4 (P1P0 = 11). If
no predefined super characters are recognized, only one pack-
et character is processed and shifted along the shift register
D3D2D1D0 per clock cycle. In this base mode, P1P0 = 00.
However, if a predefined super character (e.g., ABCD) is rec-
ognized, regular shifting operation is broken, and packet char-
acter D4 is forwarded directly to flip-flop 0.

The proposed technique not only reduces memory size but
also makes it possible for the FSM to process multiple charac-
ters within one clock cycle, which increases the system
throughput. However, the selected super character length
increases the complexity of the look-ahead decoder. Further-
more, the occurrence of valid super characters in real network
traffic affects how effectively the decoder circuit is utilized
during FSM operations.

Techniques for Enhancing System
Programmability and Throughput
This section presents techniques to further enhance the pro-
grammability and throughput of SAM-FSM. We first discuss
techniques to improve system programmability by using pro-
grammable decoder circuits and an address overlap scheme.
We then develop techniques to improve system throughput by
enabling a single-string matching engine to process multiple
packets simultaneously.

Enhancing System Programmability
An important NIDS design requirement is the ability to
update the system easily to include new attack patterns.
Because SAM-FSM is a memory-based implementation, new
attack patterns can be added to the system by updating mem-
ory contents. After the system is deployed in the field, its pro-
grammability — measured by the number of new attack

patterns that can be added to the system — is affected by the
available memory of the system at a given time. Hence, mem-
ory resources should be utilized efficiently when adding new
attack patterns. This can be accomplished with the help of
programmable memory decoder circuits and overlapping
decoder address inputs. The need for such techniques is illus-
trated by the following example.

Initially, Cluster 1 contains 12 groups and hence takes four
bits for embedding group signatures. Also, Cluster 2 has seven
groups and requires three bits for group signatures. After a
series of updates, we assume the numbers of groups belonging
to Clusters 1 and 2 become six and 14, respectively. If no pro-
grammability is implemented on the memory-decoding circuit,
the number of bits used for each cluster must remain the
same. Then, one bit in the Cluster 1 code is wasted because
only three bits are required to enumerate the six groups in
Cluster 1. Meanwhile, the three bits in Cluster 2 can represent
only seven of the 14 groups. The other seven groups must be
placed into a new cluster. However, if the fan-in of memory-
decoder circuits can be reconfigured, the number of bits used
for a cluster can be adjusted during update. In the above
example, the additional bit in Cluster 1 can be reassigned to
Cluster 2. Consequently, no new clusters must be created, and
memory efficiency is improved.

Reassigning an address bit from one group (decoder) to
another can be accommodated easily by using programmable
decoder circuits and an address overlapping scheme. The pro-
grammable decoder circuit can be programmed to selectively
ignore certain address inputs during decoding operations. The
design of such a programmable decoder circuit is not compli-
cated and does not result in significant hardware or perfor-
mance overhead.

Enhancing System Throughput
In network intrusion detection applications, string matching
operations for different packets are independent of each other.
By taking advantage of this fact, high-throughput string-match-
ing operations can be achieved by using pipelined operations
that enable a single matching engine to simultaneously check
multiple packets. This drastically increases system throughput.
Although it is a very effective approach to improve the
throughput of string matching systems, pipelined operations
rarely were exploited in previous NIDS design. To accommo-
date pipelined operation in SAM-FSM, pipeline registers can
be inserted between decoder circuits and memory subarrays.

Figure 5 shows an example pipelined system and a snapshot
processing four packets in parallel. In the pipelined system,
we use a four-to-one multiplexer to alternately feed data from
four packets to the FSM. In the snapshot, we use Pk[i] to rep-
resent the ith byte of Packet k. Sk[i] represents the current
state of the FSM after the ith byte of packet k is processed.
The pipelined implementation does not reduce the processing
time (latency) for individual packets but significantly improves
system throughput, which is a more important performance
parameter in network applications. With this deep pipeline
scheme, SAM-FSM can operate with a clock frequency above
1 GHz, which results in a system throughput around 10 Gb/s
using only one string-matching machine.

Results
According to the proposed algorithm, a simple FSM compiler
for SAM-FSM is developed. It takes the state transition table
of a typical DFA as input. Consequently, the compiler groups
FSM states, partitions state groups into clusters, generates
group signatures and performs state encoding. In our experi-
ments, we randomly take subsets of Snort rules to test the

n Figure 3. FSM with circled super-characters.
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developed compiler. The number of rules contained in the
subsets ranges from several to 500 patterns.

With the help of the developed compiler, we further con-
ducted experiments in three directions. First, we implemented
SAM-FSM on an FPGA platform and performed circuit simu-
lation to validate the proposed hardware architecture and
compiler. Then, we estimated our system throughput on both
a field programmable gate array (FPGA) device and cus-
tomized hardware. Finally, we performed experiments to
study the memory resources required by SAM-FSM and com-
pared our method with other approaches.

Architecture Validation
In the circuit implementations, we use FPGA block memory
as the memory component of the FSM and use FPGA config-
urable logic blocks (CLBs) to implement group decoder cir-
cuits. In SAM-FSM, the decoder output should directly drive
the word lines of the memory array. However, Xilinx block
memories do not provide direct access to the memory word
lines. Thus, in our implementation, we use an additional
encoder circuit to convert the one-hot decoder outputs into a
regular binary address that can be provided to the block mem-
ory as an address.

Our experiments implemented SAM-FSM on the Xilinx
Virtex IV FPGA platform. The implemented FSM is to detect
50 patterns randomly selected from Snort rules. FSMs with
and without pipelining techniques are implemented. Circuit
simulations show that both unpipelined and pipelined FSMs
function properly and are able to detect selected patterns.

System Throughput
Currently, memory cores, for example, block memories on Vir-
tex devices, which can operate with 500 MHz clocks are widely
available. With simple pipelining techniques, SAM-FSM should

be able to operate with 500 MHz clocks and thus, achieve 4
Gb/s throughput. If custom-designed hardware is used, deep
pipelining techniques can be applied, and the performance
should improve significantly. The estimated system performance
can be in the range from 10 Gb/s to 18 Gb/s for 128 kilobyte
memory size. In the estimation, we are assuming the circuit per-
formance is limited by the partitioned memory array access
time, which is estimated using cache access time (CACTI) [13].
Also, SAM-FSM requires dramatically reduced memory size,
leading to a small hardware footprint. Thus, multiple copies of
the string matching engines can be implemented to further
improve the system throughput by parallel computation.

Storage Requirements
Table 2 shows the improvement of SAM-FSM over traditional
DFA for different Snort rule sets. For each rule set, we compare
traditional DFAs and our DFA in terms of number of states,
state-coding length, and memory size. SAM-FSM reduces mem-
ory storage requirements by up to 63 times for 500 patterns, as
shown in the ninth column. The memory savings are attributed
to the reduction in number of states (due to a state-collapsing
algorithm) and to storing each state only once in memory. Our
state-coding length is much larger than traditional DFA binary
coding because we want to simplify the group detector. Regard-
less, our memory size is much smaller than traditional DFA,
which is estimated using the following equations.

The equation used to compute the storage requirement in
the straightforward memory-based FSM implementation is N ·
log2N · 28, where N is the total number of states of the FSM.
This formula assumes that the binary encoding scheme is used
in the FSM implementation. Thus, each state code requires
[log2N] bits. The memory size required by SAM-FSM is calcu-
lated by N · (L + [log2P]), where L is the length of state code.
P is the number of patterns to be detected. The [log2P] term

n Figure 4. Look-ahead decoder for super-characters.
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in the above expression represents the additional tag bits used
to indicate which patterns are matched.

Figure 6 compares storage efficiency in terms of bytes per
character with AC [1], Bitmap AC [10], Path compr. AC [10]
and B-FSM [11]. Our result is taken from the tenth column of
Table 2. Although the B-FSM approach results in memory per
character that is almost similar to SAM-FSM, it might require
multiple memory accesses to determine the next state, which
potentially degrades system throughput. In contrast, SAM-
FSM requires only one memory access.

Concluding Remarks
In this work, we present a memory-based, string-matching engine
for NID applications called SAM-FSM. It replaces the state tran-
sition table used in conventional memory-based FSMs by a much

more compact state table, which contains only one data entry for
each state of the FSM. Instead of the addresses of the next
states, a state table entry contains group signatures of partitioned
FSM states. A specially designed memory-decoder circuit con-
ducts next-state selection according to its recognized group signa-
tures and FSM inputs. To facilitate the implementation of
SAM-FSM, efficient algorithms were developed to partition
FSM states, generate group signatures, and perform state encod-
ing. Experimental results show that SAM-FSM reduces memory
size by more than 60 times compared to the straightforward
memory-based implementation. Unlike other memory-reduction
techniques proposed for string-matching engine design, SAM-
FSM does not involves complicated data translation during FSM
operations to search next states from compressed memory data,
nor does it require additional logic to generate matching output
by consolidating many partial matching results.

n Figure 5. An example four-stage pipelined system and its snapshot processing four packets in parallel: a) four-stage pipelined system;
b) snapshot of parallel processing.

Memory
array 3

Memory
array 4

P1[i]Pin

Clk

P2[i] P3[i] P4[i] P1[i+1] P2[i+1] P3[i+1] P4[i+1]

(a)

(b)

Decoder Memory
array 1

Pipeline registers

Memory
array 2

Decoder

S

State
register

Incoming
packets

Pin

P1

P2

P3

P4

S1[i-1]S S2[i-1] S3[i-1] S4[i-1] S1[i] S2[i] S3[i] S4[i]

WENG LAYOUT  1/15/09  2:13 PM  Page 20

         

Authorized licensed use limited to: National Cheng Kung University. Downloaded on April 17, 2009 at 01:28 from IEEE Xplore.  Restrictions apply.



In addition to system architecture and algorithm develop-
ment, low-level hardware design techniques also are discussed.
A reconfigurable group-decoder circuit with an address over-
lapping scheme is proposed to enhance the programmability
of the string-matching engine. Pipelined operations for memo-
ry-based FSMs also are presented to improve the system
throughput. By using these techniques, high-throughput,
string-matching engines with easy update capability can be
implemented. Our future work includes fabricating a cus-
tomized memory-based, pattern-matching engine and measur-
ing its performance.
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Table 2. Memory efficiency compared to a conventional approach.

Snort rules Tradition DFA SAM-FSM
Memory size
reduction
times

Memory size
per char (byte)# of

patterns
# of
char

# of
states

state cod-
ing length

mem.
size (KB)

# of
states

state coding
length

mem.
size (KB)

5 98 93 7 20.8 32 15 0.072 288 0.73

20 334 302 9 86.9 97 27 0.388 223 1.16

50 663 568 10 181.7 190 49 1.306 139 1.97

100 1291 1060 11 373.1 366 66 3.339 111 2.59

200 2129 1601 11 563.5 559 91 6.917 81 3.25

300 4313 3098 12 1189.6 1044 115 16.182 73 3.75

400 6722 4837 13 2012.2 1561 139 28.878 69 4.30

500 7637 5267 13 2191.1 1718 151 34.36 63 4.50

n Figure 6. Storage requirement comparison with related work.
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